控制轴数:16轴。
程序语言:运动SFC、专用指令。
伺服程序容量:32K。
定位点数:6400(可间接指定)。
伺服放大器连接方式:SSCNETⅢ/H(1系统)。
运动CPU模块为可使用各种定位程序进行定位控制、同步控制、速度/扭矩控制等高级运动控制的CPU模块。
采用在同一基板模块上安装了可编程控制器CPU模块和运动CPU模块的多CPU系统,
可实现高速顺控和高精度运动控制
RX42C4
CPU模块间的高速数据通信。
可编程控制器CPU模块和运动CPU模块带有2种CPU缓冲存储器,
一种是以0.222ms为周期执行CPU模块间恒定周期通信的存储区域,
另一种是可在任意时间直接执行数据通信的存储区域。
可任意通信的存储区域有助于CPU模块间的大容量数据传送以及刷新数据的即时反应。
例如,可一次性传送凸轮数据等大容量数据,便于编程。运算控制方式:存储程序反复运算。
内置CC-Link IE。
输入输出点数:4096点。
程序容量:80K。
提高恒定周期中断程序的速度。
执行恒定周期中断程序的最小间隔可缩短到50µs,
可编程控制器可切实读取更高速的信号。
此外,还可为中断程序设定优先度,在中断处理时执行优先度高的中断程序。
因此,在高速读取信号时,也可通过常规的输入模块+CPU模块的恒定周期中断程序读取信号。
使用数据库功能进行数据管理。
可通过内置可编程控制器的数据库管理以往通过计算机管理的配方数据和生产业绩数据。
可在SD存储卡中创建数据库,并可使用专用指令轻松增加、更新、检索、删除数据。
此外,可通过Unicode文本文件格式导入、导出数据库,
与电子表格软件共享数据。尤其可灵活应用于生产多品种食品和饮料的生产线等领域,
有效进行配方数据的变更和生产业绩的管理。输入输出模块安装台数:5台。
DIN导轨安装用适配器型号:R6DIN1。
外形尺寸(H)×(W)×(D):101mm×245mm×32.5mm。差分驱动器输出。
控制轴数:4轴。
控制単位:mm、inch、degree、pulse。
定位数据:600数据/轴。
模块备份功能:将定位数据、模块启动数据保存到闪存ROM中 (无电池)。
启动时间(运算周期0.444ms、1轴):0.3ms。
最大输出脉冲:5000000 pulse/s。
伺服间的最大连接距离:10m。
外部配线连接方式:40针连接器两个。
直线插补:2轴。
圆弧插补:2轴。
可进行螺旋线插补
用于大孔钻孔时,需考虑X、 Y、 Z轴各自的插补特性。
需通过铣削加工,沿XY轴方向呈圆弧状钻开所需规格的孔。
并将切削位置的偏差控制在最小值,同时沿Z轴仔细加工孔深。
不通过专用的NC控制系统进行此类控制时, X、 Y、Z轴之间的插补控制容易产生误差,
要求进行高精度的定位控制。
使用该定位模块的螺旋线插补功能,即可以低成本实现高难度的控制。
轻松进行定位控制
定位模块使用通过工程软件设定的“定位数据”进行位置控制和速度控制等。
在该位置控制和速度控制中还配备了增加“条件判断”后执行或重复执行指定的定位数据等高级定位控制功能。
例如,在汽车车门的密封工序中,需要进行高精度的定位控制,
以便将密封剂涂抹在车门的密封部分。
因此,需通过直线和圆弧追溯准确的轨迹,执行高精度插补控制。
多种启动方式
定位模块除常规启动以外,还还有高速启动、多轴同时启动等多种启动方式。
高速启动为通过事先分析将要执行的定位数据,
在不受数据分分析时间影响的情况下高速启动的方式。
多轴同时启动则为使指定的同时启动对象轴与已启动的轴同步开始输出脉冲的启动方式。
此外,在启动时还可根据多个定位数据群依次启动要运行的模块。
可用于相同轨迹的重复控制。